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n The information contained in this presentation reflects the
collective wisdom and experience of a large number of
individuals across the EDL community. It would be very difficult
to attempt to list them all individually without missing a major
contributor.

n However, I would like to acknowledge Carlos Westhelle of NASA
who directly provided much of the data shown here.
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ATMOSPHERE:
• Thin Martian atmosphere (surface density equivalent to Earth's at 30

km)

• Too little atmosphere to decelerate and land like we do at Earth
• Atmosphere is thick enough to create significant heating during entry
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(0 GEAR RATIOS:
• All Propulsive: 1 metric ton (MT) on surface of Mars requires 20 MT in Low Earth

Orbit (LEO). This would lead to unreasonably large masses in LEO.

• Using the Atmosphere allows a significant reduction in the gear ratio

• 1 MT on surface of Mars requires 5-6 MT in LEO

WILL IT WORK?
So far all potentially feasible human-scale Mars EDL architectures require the
successful development of SEVERAL low TRL elements.

There are many promising ideas that need assessment and testing. These
include:

• Large rigid heat shields (10m diameter by 30m length)

• Inflatable heat shields (20 to 25 m diameter)

• Inflatable aerodynamic decelerators

• Supersonic retro-propulsion

• Precision landing
5
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All six of the successful U.S. Mars EDL systems had:

• Low Landing Site: elevation sites below —1 km MOLA ^— that 's Mars Sea Level

• Low Mass: Had landed masses of less than 0.6 MT

• UNGUIDED: Had large uncertainty in targeted landing location (300 km for
Mars Pathfinder, 80 km for MER)

Mars Science Laboratory (MSL) '11 EDL Architecture:

• Low Landing Site: Landed elevation requirement for sites below 0 km MOLA

• Low Mass: Has landed mass of 0.9 MT

• GUIDED: Has uncertainty in targeted landing location of 10km

HUMANS need more capability:

Ch • All of the current Mars missions have relied on large technology
investments made in the late 1960s and early 1970's as part of the Viking
Program (heatshield shape, thermal protection material, and parachute)

• Large Mass (Entry Mass of — 100 — 150 MT)

•	 Higher elevations — interesting science

•	 Precision Landing



Previous Viking derived EDL systems and the thin Martian atmosphere and small scale height
have limited accessible landing sites to those below -1.Okm MOLA

To date the southern hemisphere has been largely out of reach (approximately 50% of the
planet surface remains inaccessible with current EDL technologies)
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MSLViking	 MPF	 MER	 Phoenix

Core Viking Technologies.
700 sphere-cone aeroshell

Parameter Viking MPF VIER Phoenix MSL

Entry Mass (kg) / Ballistic Coeff. (kg/m l ) 980/66 585/63 836/90 603/65 3257/140

Lander/Rover Mass (kg) 612 11 173 64 850

Aeroshell Diameter (m) 3.5 2.65 2.65 2.65 4.5

Angle-of-Attack (deg) / L/D 11.1-/0.18 0./0.0 0./0.0 0./0.0 -15.5° / 0.24

Peak Heatrate (W/cm z ) 21 106 44 59 <210

Parachute Diameter (m) 16.15 12.4 14.1 11.5 19.7

Landing Site Elevation (km) -3.5 -1.5 -1.3 -3.5 0.0
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Entry Mass (kg) / Ballistic Coeff. (kg/ml )	 °; .

Lander/Rover Mass (kg)

Aeroshell Diameter (m)

612

3.5

Angle-of-Attack (deg) / L/D 11.1° / 0.150°,

Peak Heatrate (W/cm') 21	 106

Parachute Diameter (m) 16.15	 12.4

Landing Site Elevation (km) -3.5	 -1.5
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n Technologies that can help close the "gap"
— Rigid Aeroshell
— Inflatable Aerodynamic Decelerator (IAD)
— Supersonic Retro-Propulsion

n Other technologies of interest
— Aerocapture
— Precision Landing
— Hazard Detection and Avoidance
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n Advantages:
• More precise landing — aerodynamics / winds now secondary effect
• Control authority and altitude from Mach > 3 to the ground
• Fewer complex systems (e.g.parachutes, deployable systems)

n Disadvantages:
• Large propellant mass fractions
• Aerodynamic stability of the vehicle plume and flow impingements
• RCS / flow interactions

— Aerodynamic / propulsion flow interactions
— Plume/ flow aeroheating

• Surface contamination issues

20



i ^	 f r	 ^I

v

16
1L

lei
It

Some possible combinations...

A*-
%sow

^	 a

MIMI
21



n Technologies that can help close the "gap"

— Rigid Aeroshell
— Hypersonic Inflatable Aerodynamic Deceleration (HIAD)
— Supersonic Retro-Propulsion

n Enabling technology

— Aerocapture
n Risk reduction and performance enhancement

— Precision Landing
— Hazard Detection and Avoidance
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n Precision landing is the capability to land very accurately
n Requires very good knowledge of the vehicle state (navigation) at the right

time, in addition to the ability to correct for state errors (guidance and
control)

n A combination of sensors including star tracker, inertial measurement unit
(IMU), altimeter, and velocimeter are used for state estimation

n Terrain Relative Navigation is a technology being developed for the Moon
and Mars which may enable a precision landing level of performance
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n HDA is the capability to detect and avoid hazards during the landing
n An onboard hazard map is developed real time during the descent using

flash LIDAR
n The flash LIDAR returns a 3-D image of the landing area which contains

higher resolution information of the landing area than currently possible
using orbit reconnaissance

n An updated landing point is then selected (either automatically or via crew
intervention) and the vehicle re-targets to the new landing point
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SHIMMIES

n Current state of the art has a gap for large robotic (> 1 MT) and human
Mars EDL

n NASA is developing a number of promising technologies that may eliminate
the gap and enable future missions to Mars

n In addition, a general planetary capability for Safe and Precise Landing is
being developed under the ALHAT (Autonomous Landing and Hazard
Avoidance Technology) project
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n For 50-100 MT entry masses we need a 20-40 m diameter aeroshell.
n Large uncertainties (unknown-unknowns):

— Lift control (how to modulate drag) with large density uncertainties
— Dynamic stability issues at supersonic and transonic conditions
— Subsonic position correction
— Subsonic separation mechanism

Specifically for an Inflatable Hypersonic Decelerator:
— Lift control
— RCS
— Fluid structures interactions
— Light weight flexible TPS with large radiative heating

Specifically for a Rigid On-orbit-deployed Hypersonic Decelerator:
— Mass fraction of Aeroshell & deployment device

n Again, there are NO Earth analog for these systems.
— NASA, Russia and ESA have tested very small scale inflatable Earth entry systems (IRVE,

RDT)
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